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a b s t r a c t 

An approach is presented to efficiently produce high quality gridded data records from the large, global 

point-based dataset returned by the Diviner Lunar Radiometer Experiment aboard NASA’s Lunar Recon- 

naissance Orbiter. The need to minimize data volume and processing time in production of science-ready 

map products is increasingly important with the growth in data volume of planetary datasets. Diviner 

makes on average > 1400 observations per second of radiance that is reflected and emitted from the lu- 

nar surface, using 189 detectors divided into 9 spectral channels. Data management and processing bot- 

tlenecks are amplified by modeling every observation as a probability distribution function over the field 

of view, which can increase the required processing time by 2–3 orders of magnitude. Geometric cor- 

rections, such as projection of data points onto a digital elevation model, are numerically intensive and 

therefore it is desirable to perform them only once. Our approach reduces bottlenecks through parallel 

binning and efficient storage of a pre-processed database of observations. Database construction is via 

subdivision of a geodesic icosahedral grid, with a spatial resolution that can be tailored to suit the field 

of view of the observing instrument. Global geodesic grids with high spatial resolution are normally im- 

practically memory intensive. We therefore demonstrate a minimum storage and highly parallel method 

to bin very large numbers of data points onto such a grid. A database of the pre-processed and binned 

points is then used for production of mapped data products that is significantly faster than if unprocessed 

points were used. We explore quality controls in the production of gridded data records by conditional 

interpolation, allowed only where data density is sufficient. The resultant effects on the spatial continuity 

and uncertainty in maps of lunar brightness temperatures is illustrated. We identify four binning regimes 

based on trades between the spatial resolution of the grid, the size of the FOV and the on-target spacing 

of observations. Our approach may be applicable and beneficial for many existing and future point-based 

planetary datasets. 

© 2017 Elsevier Inc. All rights reserved. 
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1. Introduction 

We present a methodology to produce gridded data records

of lunar surface temperatures from the Diviner Lunar Radiome-

ter Experiment ( Paige et al., 2010 ), a 9-channel filter radiome-

ter on board NASA’s Lunar Reconnaissance Orbiter, which since

July 2009 has acquired approximately 1500 observations of the lu-

nar surface per second, creating a database of records > 60 TB in
∗ Corresponding author. Present address: European Space Research and Technol- 

ogy Centre, Keplerlaan 1, 2201 AZ Noordwijk, The Netherlands. 
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ize. We build on the work of Teanby (2009) who presented an

cosahedron-based method for binning of globally distributed re-

ote sensing data. The geodesic grid used in binning does not suf-

er from bin size bias with latitude, which can result from bin-

ing onto grids defined in a cylindrical projection. Instead, bins

re effectively equal in area. Typically the entire triangular grid

s required to be constructed and stored in memory prior to bin-

ing. For grids with fine spatial scale, which are now required for

igh spatial resolution planetary datasets such as Diviner’s, this ap-

roach can consume impractically large computer memory. Adap-

ation of the technique to cope with very large numbers of data

oints and/or very fine grid resolution is therefore required for

arge datasets. 

http://dx.doi.org/10.1016/j.icarus.2017.04.007
http://www.ScienceDirect.com
http://www.elsevier.com/locate/icarus
http://crossmark.crossref.org/dialog/?doi=10.1016/j.icarus.2017.04.007&domain=pdf
mailto:elliot.sefton-nash@esa.int
http://dx.doi.org/10.1016/j.icarus.2017.04.007
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Fig. 1. Adapted from Sunday (2001) . Method to test if a ray drawn from the origin 

to a point outside the unit sphere intersects with a triangle with vertices on the 

unit sphere. Triangle vertices define a plane, F . Parametric coordinates t and s are 

calculated as fractions of the unit vectors u and v , which are parallel to the triangle 

sides v 0 , v 1 and v 0 , v 2 respectively. 
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We demonstrate the following specific developments: 

1. Rather than calculating and storing the entire grid in memory

prior to the start of the binning process, we implement a min-

imum storage, recursive scheme to bin data points onto only

the required local sub-grid of the hierarchical triangular mesh.

Each binning process is computationally independent, because

the vertices of successive sub-grids are calculated as required

when iterating toward the desired grid resolution. The overall

procedure is therefore what is commonly referred to as ‘em-

barrassingly parallel’. 

2. To test whether a point lies in a bin or not we implement a

fast ray-tracing algorithm ( Sunday, 2001 ) originally developed

for computer graphics ( Möller and Trumbore, 1997 ). 

3. We present an efficient methodology to store binned data

points in a database. 

4. Production of gridded data products from such a database pro-

ceeds using an algorithm that considers the spatial density of

data points. We discuss the relationship between on-target ob-

servation spacing, field of view size and grid resolution, and

how it may be used to tune parameters involved in production

of gridded data. 

. Binning onto an icosahedral grid 

To bin data points, a grid must first be defined in order to

est the spatial intersection of the data point with each bin. The

etrahedron, octahedron and icosahedron are all acceptable start-

ng grids that are constructed from triangular faces. Octahedral

eshes have been favored by some approaches because their ver-

ices can occupy cardinal points and edges align with the 90th,

80th and 270th meridians ( Dutton, 1996 ). However, to demon-

trate our method we choose an icosahedron as a starting grid be-

ause (i) an icosahedron more closely approximates a sphere than

n octahedron, minimizing the deviation from equal-area of new

riangles formed from bisecting triangle sides, and (ii) because this

pproach builds specifically on previous work that uses an icoshe-

ron as a starting grid ( Teanby, 2006 ). 

A vertex v n is defined as a position vector in three dimensions

 n = [ x n , y n , z n ] and each triangle is defined by 3 such vertices, e.g.

s in Fig. 1 where the triangle t 0 is defined by the vertices [ v 0 ,

 , v ]. The total number of triangles in an icosahedron-based grid
1 2 
s given by 20 × n 2 l , where l is the level, or number of iterative

ubdivision of triangle sides and n is the number of segments a

riangle side is subdivided into at each new level. n and l must

e integers. Bisection of triangle side lengths is the simplest tech-

ique and we focus only on that in our example, but n and l may

e tailored so that a desired triangle side length, q is reached. n

ay also vary as iteration proceeds so that a desired triangle side

ength may be reached that is not available through successive bi-

ection alone. For n = 2 the number of triangles is equal to 20 ×
 

l ; at each new level the grid contains 4 times as many triangles

s the previous grid level. 

Table 1 lists the total number of triangles and memory that

ould be occupied at each level if global meshes were to be stored

n their entirety. Storage of meshes is assumed to be two linked

ists of vertices and faces, to minimize disk usage. 

Coarse resolution icosahedral grids, i.e. with low values of l ,

ay be sufficient to represent global trends where fine detail is not

equired. For example, global trends in the Moon’s elevation are

dequately resolved by binning altimetry data acquired by LRO’s

unar Orbiter Laser Altimeter (LOLA) onto an icosahedral grid with

 = 2 and l = 7 ( Fig. 2 ), giving a triangle side length of 17.91 km

 Table 1 ). For broad summary products, the entire grid may be held

n a relatively small amount of computer memory and, assuming

mplementation of the binning algorithm as a single process, the

ompute time depends primarily on the number of individual data

oints. 

However, for many global point-based planetary datasets the

arget-projected field of view (FOV) can be very small relative to

he target body. Spatial information is therefore lost when FOVs

re binned onto grids with spacings that are much larger than FOV

imensions. To maximize preservation of spatial information when

roducing mapped data products from raw data, bin size should

dequately sample the FOV. In addition to LRO Diviner, this ap-

roach is applicable to any point-based planetary dataset, such as

eturned by e.g. Mercury Laser Altimeter on board NASA’s MES-

ENGER ( Cavanaugh et al., 2007 ), the Lunar Exploration Neutron

etector (LEND) also on board LRO ( Mitrofanov et al., 2010 ), or the

OMAD instrument on board ESA’s 2016 Trace Gas Orbiter mission

 Thomas et al., 2015 ). 

.1. Binning algorithm 

Impractical volumes of computer memory are required to store

eshes with levels that correspond to instrument fields of view

maller than a few hundred meters. In parallelizing the binning

rocess we can reduce computation time in multi-CPU/core envi-

onments, which are now typical. The total processing time is re-

uced by approximately a factor of the number of concurrent com-

utational processes assigned to binning data points into triangles.

Sunday (2001) presents an algorithm to test whether a ray in-

ersects a triangle by calculating the parametric coordinates, t, s of

he intersection point. As an improvement to the popular and effi-

ient algorithm by Möller and Trumbore (1997) , Sunday’s approach

s more efficient when triangle normals are pre-calculated, because

t requires computation of only a single cross product, whereas

oller and Trumbore’s calculates two regardless of whether the

ormal exists or not. t and s are positions on axes defined by the

wo of the triangle sides, represented by the unit vectors v and u ,

espectively ( Fig. 1 ). Geometrically, the procedure can be thought

f as translating the triangle so that v 0 is at the origin and trans-

orming it to a unit triangle in the plane F , with the ray direction

ligned with z . The intersect point p is within the triangle when s

0, t ≥ 0 and s + t ≤ 1 . At vertex ν0 , t = 0 and s = 0. 

Implementation of an optimized version of the algorithm writ-

en in the C language is detailed in Sunday (2001) , and we here

mplement the same optimized algorithm in FORTRAN as the pro-
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Table 1 

Memory consumption of global icosahedral grids for levels 0–14, for n = 2 . 3 point vectors of x, y, z coordinates are required to 

store the 3 vertices of each triangle, so that each triangle occupies 72 bytes when coordinates are stored as 8-byte floating point 

numbers. The memory required is only to store the total grid if it were to be calculated in its entirety prior to binning, which 

our method avoids by calculating and storing only the local sub-grid. Triangle dimensions are given for a general spherical case 

and when the radius of the target body is that of the lunar sphere, R M = 1737.4 km. 

Level, n Num. triangles Memory General case Lunar sphere, R M = 1737.4 km 

Tri. side (mrad) Tri. solid angle (sr) Tri. side length (km) Tri. area (km 

2 ) 

0 20 1.4KiB 836.119 6.28 ×10 −1 1923.228 1601630 

1 80 5.6KiB 560.904 1.57 ×10 −1 1091.452 515,834 

2 320 22.5KiB 315.416 3.93 ×10 −2 566.931 139175 

3 1280 90KiB 163.337 9.82 ×10 −3 286.333 35501 

4 5120 360KiB 82.217 2.45 ×10 −3 143.166 8875 

5 20,480 1.4MiB 41.201 6.14 ×10 −4 71.623 2221 

6 81,920 5.6MiB 20.614 1.53 ×10 −4 35.819 555 

7 327,680 22.5MiB 10.308 3.83 ×10 −5 17.910 139 

8 1,310,720 90MiB 5.154 9.59 ×10 −6 8.955 34.7 

9 5,242,880 360MiB 2.577 2.40 ×10 −6 4.478 8.68 

10 20,971,520 1.4GiB 1.289 5.99 ×10 −7 2.239 2.17 

11 83,886,080 5.6GiB 0.644 1.50 ×10 −7 1.119 0.543 

12 335,544,320 22.5GiB 0.322 3.75 ×10 −8 0.560 0.136 

13 1,342,177,280 90GiB 0.161 9.36 ×10 −9 0.280 0.0339 

14 5,368,709,120 360GiB 0.081 2.34 ×10 −9 0.140 0.0085 

Fig. 2. Mean lunar elevation sourced from LRO’s LOLA gridded products ( Neumann, 2010 ) binned onto an icosahedral grid where n = 2 and l = 7 . At this coarse spatial 

resolution global topographic trends are illustrated, but surface details smaller than the size of individual triangular bins are not resolved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

gram ptribin (supplementary materials). Sunday’s algorithm con-

tains a branch that culls of back-facing triangles. To optimize for

speed, we implement only the branch that considers two-faced tri-

angles. There is no risk of premature intersection with other tri-

angles because R is defined outwards from O , triangle faces never

overlap and triangle face normals are always in the direction of R . 

To determine in which triangle a data point lies for a given level

grid, we first define a starting icosahedron. Any data point must

lie in one bin of a global grid, because grid cells do not overlap at

their boundaries. 

Our algorithm then iterates as follows: 
1. A unit vector is defined as a ray ( R ) from the origin of the body

( O ) to a point defined by the latitude ( φ) and longitude ( θ ) of

the observation, converted into Cartesian coordinates. R must

pass through one triangle in the grid. 

2. The ray is tested for intersection with each triangular bin in the

grid by calculating the parametric coordinates t and s using the

algorithm detailed in ( Sunday, 2001 ). 

3. If the ray intersects, then (i) the number of the triangle in the

grid is appended to an address for the data point, which defines

its location in the grid, (ii) for the intersecting triangle each of

the edges are divided by 2, making 4 new triangles ( Fig. 3 ), (iii)
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Fig. 3. Recursive procedure to subdivide triangular faces. When a ray R , drawn from 

the origin O through the point to be binned p , intersects with one of the faces in the 

current grid then the sides of that face are bisected, forming 3 new vertices, v 3 , v 4 
and v 5 . These vertices are normalized to the unit sphere. The level 0 grid, an icosa- 

hedron of which t 0 is a member, is deallocated from memory and a new sub grid 

of 4 triangles ( t 00 , t 01 , t 02 and t 03 ) is formed from the new vertices plus the three 

vertices of t 0 ( v 0 , v 1 and v 2 ). The process iterates as intersection of R with each of 

the new faces is tested via the method of Möller and Trumbore (1997) ( Fig. 1 ). 
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the level of the grid, n , is incremented by 1, and (iv) the 4 new

triangles are assigned as the new grid in memory and the pre-

vious grid is discarded. R must intersect with one of the trian-

gles in the new grid. 

4. Steps 1–3 are iterated until the desired value of n is reached.

When an intersection occurs in a grid of level n the total ad-

dress of the data point is output. The address is a unique iden-

tifier for the bin in which the data point lies. In this case the

first two digits of the address are the triangle number of the

starting icosahedron and therefore are < 20. Subsequent digits

are always < 4. With the starting icosahedron being a level 0

grid, the number of digits in the address is therefore given by

n + 2 . 

For near-spherical bodies such as the Moon, which has an

blateness of 0.0014 ( Smith et al., 1997 ), the effects of latitude on

riangular bin area are negligible. Consequently lunar gridded map

roducts are very often projected onto the widely used lunar refer-

nce sphere, where the lunar radius, R M 

= 1737.4 km ( Seidelmann

t al., 2002 ). Consideration of non-spherical bodies in our applica-

ion would therefore not produce a significant improvement to the

patial accuracy of mapped products and thus we assume an in-

ariant lunar radius when defining the grid. Should it be desired,

ormulation of grids for more oblate bodies is detailed by Teanby

2006) . 

Due to the spherical nature of the initial triangles, i.e. triangle

ides are arcs on great circles, the center triangle in each subdivi-

ion ( Fig. 3 , triangle v 3 v 4 v 5 ) has a slightly larger area than those

t the corners. The effect is most pronounced where subdivided

riangles are the largest, i.e. l = 1 and n = 2 , where the curvature

f a spherical triangle is greatest. In assessing the deviation from

qual-area as a function of l for n = 2 , we find that in the most

xtreme, but rare, cases spherical triangles that are always at the

enter of subdivisions can be up to ∼ 121% the size of an equiva-

ent equal-area triangle at the same grid level, while those always

t the edge can be just ∼ 61% of the area. The cumulative dispro-

ortion in area plateaus for l > 4 for center triangles and l > 8

or edge triangles, with the vast bulk of the difference introduced

here triangles are largest relative to the sphere ( l < 4). 

An equal-area grid is not absolutely required by the technique

e present, because the weight of each point is calculated based

n the area it covers, and is propagated through the binning pro-

ess. However, equal-area grids are necessary for datasets where

he weight of data points in relation to the area they cover is

ot known, because unequally-sized bins would introduce binning
rtifacts and may misrepresent data. Despite not being necessary

or our technique, equal-area grids remain more desirable because

onsistent spatial sampling is ensured. An equal-area correction for

cosahedral meshes may be implemented using bubble meshing

 Shimada and Gossard, 1995 ) or coordinate adjustment ( Tegmark,

996 ). We intend that our approach should include the coordinate

djustment procedure of Tegmark (1996) . The procedure applies a

eries of rotations to any vertex on the icosahedron, and applies

he adjustment as reduced to a single right triangle in x and y ,

efore rotating the vertex back to its original position. We recom-

end inclusion of such a correction, but in this paper we consider

 simple case that does not include the adjustment. 

The area of a non-spherical equilateral triangle, �, is given by
 

3 q 2 / 4 , where q is triangle side length. Assuming flat, equal-area

riangles we assess the relationship between �, grid level and the

otal number of triangles for an icosahedral grid the size of the

unar reference sphere where, R M 

= 1 , 737 , 400 m ( Fig. 5 ). 

. Choice of appropriate grid resolution 

Telescope observations have a non-infinitesimal field of view

FOV) that is defined by instrument specifications and observation

eometry. The goal of our approach is to bin observations onto

 geodesic grid so as to store and retrieve them without loss of

ne spatial detail in the highest resolution data. The size of the

round-projected FOV for an observation dictates the maximum

seful spatial resolution of the data obtained. Consequently the

round-projected FOV size also dictates the minimum useful size

f the triangular bins that is required to ensure that spatial infor-

ation in observations is not needlessly oversampled at the ex-

ense of computer memory. Grid level, l , is therefore selected to

atch the smallest FOV that is possible for the combination of in-

trument specifications and spacecraft observation geometry. 

Spatial information in raw data would be fully preserved if data

ere Nyquist sampled, where bin spacing is half the size of the

mallest FOV. In this case some information is lost from observa-

ions with the smallest FOVs, which are undersampled. Conversely,

hose with the largest FOVs are oversampled. Such a compromise

epresents the balance between competing goals to minimize data

olume and maximize preservation of spatial information in raw

ata. However, given sufficient computational resources, l may be

et so that all FOVs are at least Nyquist sampled. 

Thusfar we have referred only to the field-of-view in the gen-

ral case, but this can refer to both the instantaneous field-of-view

IFOV) or the effective field-of-view (EFOV), which represents the

umulative signal that is incident on the detector over course of

he observation. The IFOV for a single detector is represented by

D probability function in the focal plane of the detector. It de-

cribes the relative response of the detector to incident radiation

s a function of the angle between the incoming radiation and the

ormal to the focal plane. The mean IFOV of Diviner’s 189 detec-

ors ( Paige et al., 2010 ) is plotted in Fig. 6 . An instrument’s IFOV

ay be altered by smearing in the in-track direction due to space-

raft motion over the integration time, or by a time-dependent

esponse of the detector. An approach to quantify the effects of

pacecraft motion and detector response time on the IFOV to cal-

ulate the EFOV is presented by Williams et al. (2016) . We consider

FOVs in this study, but for simplicity and comprehension we re-

er to the general case, FOVs, unless explicitly stated. We do not

onsider uncertainties on the placement of the FOV, but note that

hese may be present due to uncertainties in spacecraft pointing

r clock kernels. With the shape of the FOV constrained ( Fig. 6

nd Williams et al., 2016 ), the size of the projection of the FOV

nto the target body is then dependent only on the observation

eometry. 
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Fig. 4. Iterative subdivision of a Moon-sized icosahedron to determine the triangular bin that a point lies in. Left: An icosahedron is defined where vertices lie on a sphere of 

lunar radius ( R M = 1737 . 4 km). Triangular face numbers are labeled. Ray R is defined from the origin, O , through a point, p , on the surface that corresponds to the geographic 

coordinates of an observation. The ray is found to intersect with face 10 and the triangle number, or address, of the point is set to 10. Middle: Sides of triangle 10 are 

bisected, creating level 1 triangles 1–4. New vertices are normalized to the lunar radius, so that the level 1 subgrid more closely approximates the lunar sphere. The level 

0 icosahedron is erased from memory. Each level 1 triangle is tested for intersection. R is found to intersect with triangle 4. The triangle number of p is appended with 

4. Right: The process iterates until a level with the desired triangle side length is reached. Here, an observation at p has been binned into triangle 1044323 on a level 5 

icosahedral grid where n = 2 . 

Fig. 5. Area and total number of triangles in an icosahedral grid (with n = 2 ) as a function of triangle side length, calculated for the lunar reference sphere ( R M = 1 , 737 , 400 

m). Triangle areas are calculated for flat surfaces rather than those projected onto a sphere, i.e. triangle sides are linear. 
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In Diviner’s nominal mapping mode the elevation actuator po-

sitions the boresight at nadir so that the emission angle for ob-

servations is ∼ 0 °. This configuration is desirable for systematic

mapping of planetary surfaces because it minimizes elongation of

the FOV and therefore maximizes the effective spatial resolution

of observations. Assuming a flat body, changes in emission angle

across the FOV due to curvature of the target are negligible in this

case because the Moon is large compared to the ground-projected

FOV. Therefore the dominant influence on the spatial resolution

of the observation is spacecraft altitude. For circular orbits space-

craft altitude does not significantly vary, but for elliptical orbits the

spatial resolution of observations is best at periapsis and worst at

apoapsis. 

We model an example of a ground-projected Diviner FOV as a

function of spacecraft altitude ( Fig. 7 ). Surfaces of constant proba-

bility are created by drawing contour lines on the FOV probability

distribution shown in Fig. 6 , then extruding them along the space-

craft altitude axis ( Fig. 8 ). LRO’s orbital altitude has varied between

∼ 20–200 km over the commissioning, nominal, science and ex-
ended science mission phases ( Fig. 7 ). Since December 2011 LRO

as been in an elliptical orbit with its periapsis oriented over the

unar south pole, allowing the best spatial resolution data to be

cquired of the south polar region. 

At a common best-case altitude of ∼ 30 km the majority of

iviner’s FOV, when projected onto the lunar sphere, occupies an

llipse approximately 160 × 120 m in size, with its major axis

riented in the in-track direction. In selection of grid resolution

e aim to strike a balance between maximizing preservation of

patial information in raw data while minimizing processing time

nd storage volume. Triangle spacing should therefore be between

he Nyquist sample length for smallest surface-projected FOVs, but

ot so small as to grossly oversample the largest surface-projected

OVs. Consideration should also be given to the relative propor-

ions of the dataset with different FOV sizes. For example, if small

urface-projected FOVs are rare in the dataset, with the bulk of ob-

ervations mostly having a consistently large FOV, then it may be

ore desirable to set l appropriately to sample large FOVs, accept-

ng information loss in only a small fraction of the observations. In
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Fig. 6. The mean instantaneous field-of-view (IFOV) for LRO Diviner ( Paige et al., 2010 ), calculated by averaging the in-track and cross-track angular responses for all 

detectors then convolving them to form a 2D probability distribution in the focal plane. For simplicity, here we consider only the channel-averaged IFOV, but this represents 

a key step in modeling an observation’s ‘effective field-of-view’, or EFOV ( Williams et al., 2016 ). 
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Fig. 7. Periapsis and apoapsis of the Lunar Reconnaissance Orbiter above the lunar reference sphere since Diviner’s first orbital observation of the Moon. The distance from 

Diviner’s focal plane to the lunar surface determines the ground-projected size of the FOV, as modeled in Fig. 8 . 
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Fig. 8. Surfaces of constant probability created by drawing contour lines on the FOV probability distribution and extruding them along the spacecraft altitude axis. The plane 

in which Fig. 6 is calculated is defined by the dashed red line. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 

this article.) 
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this case, a suitable grid may be constructed by only bisection of

triangle sides down to l = 14, where triangle sides are ∼ 140 m in

length ( Fig. 5 ). 

4. Construction of a database 

In addition to modeling the FOV, we also perform geometry cal-

culations to project points onto a digital elevation model of the tar-

get surface, using the technique described in Teanby (2009) . Both

calculations are computationally expensive, and would normally be

performed every time a gridded data record is constructed, caus-

ing unnecessary repeat processing for data that is used in multiple

map products. It is therefore desirable to pre-process and store a

database of observations that may then be directly gridded into

map products without further processing. However, for even mod-

est size datasets, several challenges regarding data volume must be

overcome in order to store and query a database on such a scale.

Here we describe our procedure to bin and store observations effi-

ciently. 

To store the spatial information contained in each observation,

the FOV is modeled by populating the probability distribution with

a cloud of n fov points, whose spatial distribution represents the

FOV ( Fig. 9 , panels a and b) ( Williams et al., 2016 ). Point density

is highest in locations that are the most significant in the obser-

vation. One cloud of modeled points (e.g. Fig. 9 b represents a sin-

gle Diviner observation and each point therefore represents some

fraction of that observation. If the original observation has weight,

w , then each of the n fov points in the FOV represent w / n fov of the

observation. Each point carries the same brightness temperature

value as the original because only a single observation was made. 

Using the algorithm defined in our program ptrinum , each point

in the FOV is binned into a triangle on the target grid ( Fig. 9 b). Our

approach does not require the total grid to be pre-defined or stored

in memory in its entirety, because the algorithm is iterative and

operates only on the triangles in the current level’s sub-grid, dis-

regarding all others. A triangle is represented uniquely by a num-

ber that is built during iteration, with successive digits identifying
riangles that the point was found to intersect with at each level

 Fig. 4 ). Binning points onto the icosahedral grid is computationally

arallel, because the triangle number of each point is independent

f others. Our method therefore occupies very little memory and

enefits from significant speedup in a multicore or cluster envi-

onment. 

n fov must be sufficiently large to ensure that all bins in the pro-

ected FOV are populated by the modeled point cloud, so that the

patial extent of the observation is completely resolved on the grid.

his eliminates the occurrence of empty bins in areas where the

urface contributed to an observation. Typically, n fov is equal to a

ew hundred to a few thousand, with the modeled FOV tending

o the actual FOV with increasing n fov . However, the resulting data

olume also becomes impractical to store or query with increasing

 fov . To store a representative approximation of the FOV the data

olume must be reduced. 

We therefore employ several techniques to compress data.

irstly, points that lie in the same triangular bin are gathered

nd their weight summed ( Fig. 9 c). This is accomplished com-

utationally by the program ptrigather . Gathered points’ positions

nd weights representatively sample the FOV as projected onto the

rid. While this technique does result in some loss of spatial in-

ormation by resampling onto the triangular grid, it allows for a

eduction in data volume by a factor that is proportional to the

ean number of points in each triangle. 

Using real observations, we demonstrate the FOV modeling and

cosahedral binning process ( Fig. 10 ). Diviner observations in chan-

el 6 (responsive to 13–23 μm photons ( Paige et al., 2010 )) were

elected in a geographic area that was observed during LRO orbit

02, acquired on August 5, 2009. The study area was selected to il-

ustrate a common situation for Diviner data: FOVs contain a broad

emperature distribution within their ground-projected footprints,

he result of a SW-NE trending topographic feature and a solar in-

idence angle of ∼ 57 ° causing differential illumination conditions

observations in the scene were acquired over a period of ∼ 2.6 s

nd the local mean solar time was ∼ 15.785). An observation by

ROC NAC (M1159678514RE) illustrates the study area under the
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Fig. 9. Schematic pipeline for binning and gathering points in a modeled FOV onto a triangular grid (a) A single observation is a measured radiance at a discrete latitude and 

longitude on the target body (white cross), but is modeled as a probability distribution representing the FOV projected onto an icosahedron-based grid that approximates 

the target surface. (b) A Monte-Carlo population of n fov points quantizes the FOV onto the grid. Point density reflects the relative contribution of radiance from the area 

observed. Each point represents a fraction 1/ n fov of the original observation and lies in one triangle on the grid. The triangle number is calculated for each point (e.g. Figs. 1, 

3 and 4 ) using our program ptrinum . (c) Points are gathered in each bin to reduce their number by the program ptrigather . A gathered points’ weight is equal to the sum of 

the ungathered points in the bin. (d) Gathered points’ positions and weights representatively sample the FOV as projected onto the grid. 
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ost similar available illumination conditions ( Fig. 10 a), and has a

olar incidence angle of 50 °. 
Here we model the EFOV ( Williams et al., 2016 ) of a single ob-

ervation with a large number of Monte Carlo points ( n f ov = 10 4 )

n order to well resolve its spatial extent ( Fig. 10 b). The EFOV is

inned onto an icosahedral grid, where l = 14 and n = 2 . The frac-

ion of the observation that intersects with each triangle is repre-

ented in the database by weight, w ( Fig. 10 c). Here, the number

f individual data points is reduced from 10 4 to 362, a reduction

y a factor of ∼ 27.6, but an increase from the original single dis-

rete point by a factor of 362. Additional methods are employed

o further reduce data volume before storage in the database are

escribed in Section 4.1 . 

To illustrate the process for data acquired in nadir pointing

mapping’ mode we also apply the procedure to the 140 total Di-

iner observations that are selected within the study area. 140

bservations ( Fig. 10 d) are each modeled by 10 4 EFOV points

 Fig. 10 e). The resulting 1.4 × 10 6 EFOV points are then binned and

athered to 49,818 corresponding points on the icosahedral grid

 Fig. 10 f). Note that triangular bins are represented by points at

heir centroid and contain one point per triangle per intersecting

FOV. In this case there is significant spatial overlap of EFOVs, par-

icularly in their low-probability edges. However, the central part

f each EFOV remains the dominant contributor to the local signal.
.1. Observations as linked lists 

A Diviner observation comprises a single measurement of ra-

iance at a geographic location and can therefore be represented

y a single data record. Data fields in the record that are ancillary

o the observation may include quantities such as emission angle,

hase angle, Julian date or spectral channel. Diviner Reduced Data

ecords contain 33 such fields ( Sullivan et al., 2013 ). Fields that

elate to observation geometry such as emission, phase and inci-

ence angle are specific to the precise latitude and longitude of the

bservation, whereas others, such as a timestamp or spectral chan-

el number are invariant with location. Data records for modeled

OV and gathered points therefore only differ from the original ob-

ervation record in those fields that relate to their location on the

arget surface. To further compress data volume we may there-

ore construct two linked lists. The first list contains one record

er observation, with each record comprising fields whose values

re independent of location. The second list contains one record

er gathered point, with each record comprising fields whose val-

es depend on location, and are unique for each gathered point in

n observation. To reconstruct a full-length record for each gath-

red point, the row number of the original observation is stored

s an additional column in the second list. Our program ptrilink

ccomplishes these tasks. At this stage the triangle number be-
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Fig. 10. Pipeline for binning and gathering points in a modeled EFOV onto a triangular grid as applied to real data. Data are brightness temperatures observed by Di- 

viner channel 6 ( ∼ 13–23 μ m) during LRO orbit 502. Crosses mark the latitude and longitude recorded for each observation. (a) Study area: Portion of LROC NAC image 

M1159678514RE (NASA/GSFC/Arizona State University) with LOLA 128 ppd topography ( Neumann, 2010 ) overlaid in color. A white cross marks the recorded location of a 

single Diviner observation shown in panels b and c. (b) Single Diviner observation is modeled as 10 4 discrete points via a Monte Carlo method described in Williams et al. 

(2016) . (c) The modeled EFOV binned on an icosahedral grid ( l = 14 , n = 2 ) and gathered according to our method – one point per EFOV per triangle that is intersected, as 

in Fig. 9 . Points are colored according to their weight, w , the fraction of the total observation that falls in each triangle. (d) 140 observations of brightness temperature in 

orbit 502. Colored crosses indicate brightness temperature. (e) EFOVs of the same observations modeled each as 10,0 0 0 points (colored dots). Locations recorded for each 

observation remain marked with white crosses. (f) EFOVs shown in panel e are binned and gathered onto the icosahedral grid, as demonstrated for the single observation in 

panels b and c. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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comes unnecessary and may be discarded to further save space,

because each point’s location is described by its latitude and lon-

gitude fields. 

Linked lists are stored as tables in HDF5 files with ‘blosc’ com-

pression ( Alted and Vilata, 2002 ). For large datasets, files may be

organized by commonly-queried fields such as latitude, channel

number or date. Retrieval of data is performed using a query tool.

To avoid long query times a simple indexing scheme is employed,

where the maximum and minimum of each field is stored in a

separate table. Upon a user query the index is consulted to deter-

mine which files contain points that meet the query constraints,

and should therefore be decompressed and returned. 

5. Production of gridded data records 

Points returned from an icosahedral database query require no

further processing and are ready to be binned onto Cartesian grids

to create science-ready map products. 

5.1. Relationship between grid size and data density 

Data density in gridded data records is governed by the rela-

tionship between the on-target spacing between observations, l o ,

and the spatial resolution of the grid onto which data are binned,
 g . For a set of typical Diviner data, l o is effectively invariant, be-

ause observation spacing is pre-determined by the spacecraft or-

it and observation geometry. For our application l g is also fixed,

ecause maps with consistent spatial resolutions must be pro-

uced en masse for release to a planetary data archive (NASA’s

lanetary Data System). Our goal is to produce maps with contin-

ous data coverage within the cumulative EFOVs of many observa-

ions. For illustrative purposes we assert that the most significant

art of a field of view is that within the full-width half maximum

FWHM). The FWHM may be as arbitrary as any isosurface of prob-

bility (e.g. as in Fig. 8 ), but provides a consistent definition: It is

he part of the FOV where the signal from an observation is dom-

nant in a gridded product built from observations acquired by a

ushbroom instrument (i.e. the low probability edges of FOVs over-

ap, but ideally the FWHMs do not). In considering the relationship

etween l o , l g and the FWHM ( Fig. 11 ) we find that four distinct

egimes exist, each uniquely affecting the data density and uncer-

ainty in gridded products. 

The most effective transfer of information from observations to

ridded product occurs when l o ≈ l g ≈ FWHM , or in other words,

hen there is roughly one observation per bin and when the sig-

ificant portion of each observation is the same size as a bin. How-

ver, the idealized situation where observations are mapped one-

o-one into pixels, is rare. 
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Fig. 11. Schematic of 4 binning regimes identified using ratios of observation spacing over grid spacing ( l o / l g ) and observation spacing over the most significant part of an 

observation, which for the purpose of illustration we arbitrarily define as the FWHM of the FOV. The in-track direction is aligned with the vertical axis. Observation spacing 

is consistent with Diviner’s pushbroom mode of operation, where linear arrays of 21 detectors are oriented approximately in the cross-track axis and observe every 0.128 ms 

( Paige et al., 2010 ). Note that l o refers to mean observation spacing for the general case – in the lower quadrants they are more closely vertically spaced than laterally to 

adequately represent the situation for Diviner observations. 
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.2. Effect of varying n fov 

Prior to this method, Diviner GDRs have been produced by

odeling EFOVs and binning them onto the target grid in a sin-

le step, which negated the need to store the large data volume

roduced by EFOV modeling. However, the value of n fov was lim-

ted for computational practicality, i.e. to allow faster processing

imes that did not delay the regular data release schedule. Ideally,

 fov would be set as large as practically allowed, to maximize the

delity of EFOVs. The construction of a database built with large

 fov is of high scientific value. In our example shown here we set

 f ov = 10 4 , a factor of 100 higher than the 10 2 points previously

sed to model each observation. It is more CPU-intensive to con-

truct the database in this manner, but after construction it en-

bles bespoke map products to be built quickly, and with better–

esolved EFOVs. The greatest advantages occur when the same ob-

ervations are used in multiple GDRs, as observations would have

reviously been processed for each GDR. 

To illustrate the benefits of using a higher value of n fov , we

emonstrate the difference between 128 ppd maps built using

FOVs with n f ov = 10 2 and n f ov = 10 4 ( Fig. 12 ). The observations

ncluded, and the study area, are the same as for Fig. 9 . Maps of

rightness temperature ( Fig. 12 A) and the total number of observa-

ions in each bin are produced from: raw observations, EFOVs re-

olved with n f ov = 10 2 , n f ov = 10 4 and finally, those resolved with

 f ov = 10 4 that have been retrieved from the icosahedral database.

rightness temperature maps appear relatively similar in all cases

here the EFOV is modeled (i.e. excluding the map built with ob-

ervations represented as single points), but there are clear differ-

nces in the number of observations per bin ( Fig. 12 B). Slight dif-
erences in the spatial distribution of each observations’ EFOV are

ntroduced by the disparity in EFOV fidelity between EFOV 100 and

FOV 10, 0 0 0 ( Fig. 12 C, left). Differences are also introduced by the

cosahedral binning and gathering process, which we illustrate as

he difference between EFOV 10, 0 0 0 and ICOS 10, 0 0 0 ( Fig. 12 C, right). 

However, differences between the brightness temperature maps

 Fig. 12 C) indicate that disagreements of up to 5 K in EFOV 100 −
COS 10 , 0 0 0 are due to the inability of the low-fidelity EFOV 100 to

dequately sample the ground projected footprint of each obser-

ation, which in this case may contain a broad range of temper-

tures. Differences are largest where temperature heterogeneity in

he EFOV is largest. The cumulative EFOV 100 − ICOS 10 , 0 0 0 across the

tudy area is 148.22 K, whereas a much smaller value of 59.05 K

s calculated for EFOV 10 , 0 0 0 − ICOS 10 , 0 0 0 , indicating that increasing

 fov benefits data quality, and that the effect of icosahedral binning

n a well-resolved EFOV does not appear to cause significant infor-

ation loss. 

To construct brightness temperature maps from the icosahedral

atabase, we use the weighted mean of the distribution of frac-

ional observations that fall in each bin. Each point retrieved from

he database has a corresponding weight that is calculated as the

raction of the original observation that falls in a triangle on the

cosahedral grid. 

The weighted mean, μ∗ and its variance, σ 2 
w 

are given by: 

∗ = 

�N 
i =1 

w i x i 

�N 
i =1 

w i 

(1) 

nd 

2 
w 

= 

�N 
i =1 

w i (x i − μ∗) 2 

�N w i 

(2) 

i =1 
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C

B

A

Fig. 12. Differences between binning EFOVs modeled with different numbers of Monte Carlo points, and storing them in the icosahedral database in order to produce 128 

ppd gridded data records. Data and study area are as for Fig. 10 . (A) Gridded brightness temperatures. Comparison between 128 ppd maps produced with, [left] 140 Diviner 

observations (EFOVs are not modeled), 100 [center-left] and 10,0 0 0 [center-right] Monte Carlo points, and [right] with 10,0 0 0 EFOV points retrieved from an icosahedral 

database (with l = 14 , n = 2 ). (B) Total number of observations per bin in each brightness temperature map. For raw (level 1) Diviner observations, this can only be an 

integer. For EFOVs this is the sum of the total fractional observations in each bin, where the minimum value is 1/ n fov . For icosahedrally-binned EFOVs it is the sum of 

the weights of fractional observations in each bin. (C) Left: Brightness temperature difference between maps built from EFOVs with n f ov = 100 and n f ov = 10 , 0 0 0 . Right: 

Brightness temperature difference between maps built with and without icosahedral binning of EFOVs with n f ov = 10 , 0 0 0 . 
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respectively, where x i is each data point, N is the total num-

ber of points to be binned, and w i is the weight of each data

point. In our binning algorithm, two passes of the point cloud

to be binned is therefore required, the first to calculate μ∗, and

the second to use μ∗ to calculate the variance on the weighted

mean, σ 2 
w 

. This most straightforward method is sufficient when

the number of points per bin is small enough not to cause over-

flow or other errors caused by the limitations of floating point

arithmetic. Chan et al. (1983) discuss the selection of appropriate

algorithms to mitigate issues arising due to computational preci-

sion when the number of points per bin is very large. This would

be important when e.g. calculating the mean of temperatures ob-

served over a long time period, using large numbers of repeat

observations. 

5.3. Data density and interpolation 

In general, FOV modeling increases the spatial continuity of

map products, but it does not eliminate the occurrence of empty

data bins on the target grid. When l g > l o ( Fig. 11 lower quadrants,
here l o / l g < 1) there is on average more than one observation

er bin, and therefore a high data density and low probability of

mpty bins. Additionally, large FOVs can reduce the occurrence of

mpty bins. However, when FOVs are small and observations are

idely spaced ( Fig. 11 top-right), empty bins are more likely to oc-

ur. Empty bins are possible even when FOVs are large and inter-

ecting (e.g. Fig. 11 top-left), but are inadequately sampled. Under-

ampling of FOVs can occur if n fov is set too low when building

he database, or if the triangle size in the database approaches or

xceeds l g . 

In general we would not recommend interpolating between Di-

iner observations on a grid, because it adds no information and

isks misrepresenting the data. However, if the spatial density of

bservations offers sufficient confidence on the temperature field

ithin the bin then an empirical approach may be applied to inter-

olate over empty bins. We illustrate a possible approach by bin-

ing data at 128 and 256 pixels per degree ( Fig. 13 ). Data include

hose from Fig. 12 , but cover a wider area to show an entire orbit

wath. In this case, a 128 ppd grid resolution ( Fig. 13 – top row)

llows for l o / l g ≈ 1, because the number of observations per bin is
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Fig. 13. The effect of, and empirical remedy to, cases where the FOVs are not sufficiently resolved to fill all bins that they intersect with. Data are binned onto 128 ppd 

(top row) and 256 ppd (bottom row) grids and include those from Fig. 12 , but cover a wider area to show an entire orbit swath. (A) The total number of observations per 

bin, approximated by the sum of the weights of all database points in each bin. (B) Data density, d , as calculated in a 7 × 7 kernel using Eq. (3) . (C) Distribution of data 

density in bins where there is data – if FOVs are well-sampled, there are no empty bins in the swath, as for the 128 ppd map, but not for the 256 ppd map. (D and E) 

Brightness temperature maps built by calculating the weighted mean, μ∗ , of the brightness temperature distribution in each bin. The boundary of Fig. 12 is outlined by 

the dashed white box in the 128 ppd map in column D. For maps in column E, interpolation is performed for bins where data density is equal to or exceeds a threshold, 

d ≥ 0.7, selection of which is informed by the distribution of data density in C. In both D & E, pixels are nulled where data density is below the threshold. This removes 

scattered and isolated data points at edges of the swath, where cumulative FOV weight is low. (F) Error on the weighted mean, σ w . A special value is assigned to bins where 

interpolation has occurred (red), to indicate that no data was present and so it is not possible to calculate uncertainties for these bins. (For interpretation of the references 

to color in this figure legend, the reader is referred to the web version of this article.) 
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lose to 1, whereas the value for a 256 ppd grid ( Fig. 13 – bottom

ow) is lower by approximately a factor of 1/2 2 . 

Data density, d , can be determined with a 2D kernel density

unction. Valid quantities to describe data density within the ker-

el include the fraction of non-empty bins, the mean number of

ata points per bin, or the mean observation weight per bin. For

implicity, we here use the kernel density of non-empty bins be-

ause it is independent of observation weight, and therefore does

ot vary as a function of orbital altitude. If the probability of a bin

t grid coordinates ( x ′ , y ′ ) containing data is equal to either 0 or

 then the density of data in a square kernel, with an odd integer

ide length, n , and center bin at ( x, y ), is given by: 

1 

n 

x + n ∑ 

x ′ = x −n 

y + n ∑ 

y ′ = y −n 

d(x ′ , y ′ ) (3)

d is therefore the fraction of non-empty bins in the neighbor-

ood of each pixel ( Fig. 13 B). Interpolation can proceed in empty

ins where the local data density exceeds some threshold, i.e. d

 d t . The distribution of data density ( Fig. 13 C) may inform the

election of the thresholds to be used to determine where to in-

erpolate over empty bins. In this example we select d t = 0 . 7 , be-

ause it allows interpolation in the majority of the 5318 empty

ins in the 256 ppd map ( Fig. 13 C and D – lower row), but ex-

ludes those with the lowest significance, which are likely to fall

n swath edges. We use a Delaunay triangulation ( Delaunay, 1934 ),

hough we have not assessed the relative merits of other methods

e.g. bilinear, cubic, spline). In addition to determining areas of suf-

cient confidence, data density can identify outlying, isolated bins
hat result from scattered, low probability fringes of EFOVs. This

ommonly occurs near the edges of orbit swaths. In these locations

here is insufficient confidence in the temperature field to produce

 spatially continuous map and bins may be nulled where d < d t .

fter interpolation bins that contain data, but that are in areas of

nsufficient data density ( d < d t ), are nulled. This is similar to the

in count cutoff applied in Williams et al. (2016) . Interpolated bins

o not contain real data and therefore contribute no statistical sig-

ificance to the map. We record this in the uncertainty map by as-

igning those bins a reserved and identifying value, to ensure that

cience data are not misinterpreted ( Fig. 13 F – red bins). 

The resulting interpolated 256 ppd map compares well to the

on-interpolated 128 ppd version ( Fig. 13 E) in terms of continu-

ty and apparent consistency. We present an extreme case where a

ignificant number of bins are interpolated, but ideally, grid reso-

ution would be selected such that data are not unnecessarily over-

ampled, so that l o / l g ≈ 1. 

.4. Separation of orbits by swath 

Our example deals with data from a single orbit, but the vast

ajority of Diviner mapped data products contain data from mul-

iple orbits that may have spatially intersecting swaths. Averaging

pparent brightness temperatures within overlapping swaths/FOVs

hat were acquired in the same orbit is an acceptable represen-

ation of the radiative state of the lunar surface, because subse-

uent observations are closely spaced in time, ∼ 128 ms ( Paige

t al., 2010 ). However, caution should be exercised when binning
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observations acquired at significantly different local times, because

differences in illumination conditions between observations would

cause gridded products to be less meaningful; they would aver-

age together multiple radiative states of the surface from differ-

ent times of day. This becomes increasingly important for daytime

observations with high solar incidence angles, because shadows

may quickly sweep across terrains during LRO’s approximately 2

h orbital period. We therefore adopt the approach demonstrated

by ( Hayne et al., 2015 ) who correlate thermal extremes with UV

albedo to show evidence for surface H 2 O at the lunar south pole.

In their study, minimum, maximum and mean temperature maps

are constructed by compounding bolometric brightness tempera-

ture grids binned on a per orbit basis. 

We present a function bin2dwbyorbit and associated functions,

that apply the binning method illustrated in Fig. 13 , but also com-

bine swaths from multiple orbits to produce broader scale map

products. The weighted mean, data density and uncertainty of the

brightness temperature field within each orbit swath is first calcu-

lated. Optionally, low data density bins are then interpolated and

low probability swath fringes may be nulled. Individual orbit tracks

are then combined such that in regions of overlap the unweighted

mean of the temperature field is calculated, but total observation

weight and uncertainty are propagated to the final map products.

We assert that this approach adequately represents observations of

the time-varying temperature field acquired in subsequent orbits. 

6. Conclusions 

A pipeline is presented to bin, store and retrieve globally dis-

tributed modeled fields of view for the production of gridded

brightness temperatures from LRO’s Diviner Lunar Radiometer Ex-

periment. Our approach can be implemented in a highly parallel

way and the construction of a database avoids repeat processing of

data points. In optimizing the quality of science-ready data prod-

ucts, we have identified four binning regimes based on quantifica-

tion of the spatial resolution of the grid, the size of the FOV and

the on-target spacing of observations. We propose that calibration

of the data density threshold, d t should be performed based on

a per-map basis, informed by our parameterization of the spatial

characteristics of the data and grid. We have implemented this ap-

proach in the production of gridded data records from the Diviner

Lunar Radiometer Experiment, but note that it is applicable to a

wide range of existing and future point-based planetary datasets. 
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Appendix A 

Supplementary code and data associated with this article is

available online in two online repositories. FORTRAN code to per-
orm icosahedral binning is available at https://github.com/elliotsn/

cosbin . Matlab code to construct map products by filtering FOVs

nd interpolating according to data density on a per orbit basis is

vailable at https://github.com/elliotsn/bin2dbyorbit . 
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