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The Lunar Reconnaissance Orbiter (LRO) Diviner instrument detected a thermal emission signature
90 seconds after the Lunar Crater Observation and Sensing Satellite (LCROSS) Centaur impact and on
two subsequent orbits. The impact heated a region of 30 to 200 square meters to at least 950 kelvin,
providing a sustained heat source for the sublimation of up to ~300 kilograms of water ice during
the 4 minutes of LCROSS post-impact observations. Diviner visible observations constrain the mass of
the sunlit ejecta column to be ~10−6 to 10−5 kilograms per square meter, which is consistent with
LCROSS estimates used to derive the relative abundance of the ice within the regolith.

On 9 October 2009, the Diviner Lunar
Radiometer onboard the Lunar Recon-
naissance Orbiter (LRO) observed a con-

trolled impact of the Lunar Crater Observation
and Sensing Satellite (LCROSS) (1) into one of
the coldest places on the Moon (2). Diviner’s mul-
tispectral thermal infrared measurements of this
event provide insight into energy dissipation and

cooling during a planetary impact in a region
where volatiles may be cold-trapped (3, 4). We
report on the effects of volatiles on the temper-
ature behavior observed by Diviner and the
LCROSS Shepherding Spacecraft (SSc).

Diviner is a push-broom visible and infrared
radiometer with nine channels spanning wave-
lengths from 0.3 to 400 mm, with sensitivity to

a broad range of temperatures (5) (table S1).
Daytime brightness temperatures (Fig. 1B) show
that the LCROSS impact site in Cabeus crater
is in persistent shadow, with a nearly isother-
mal surface at ~ 40 K just before impact (6).
Figure 1 shows that the LCROSS impact oc-
curred near the center of one of the coldest re-
gions of Cabeus crater. Thermal models (2) place
the LCROSS impact site’s annual average tem-
perature at 37 K, in the 99.7th percentile (by
area) for the region poleward of 80°S.

The LRO orbit was modified to put the
closest approach (slant range 78 km) at 90 s after
impact of the launch vehicle’s spent Centaur up-
per stage, in order to better observe the LCROSS
impact while protecting the spacecraft from de-
bris. Also, the spacecraft was rolled 81.1° to allow
the Lyman Alpha Mapping Project (LAMP) to
view the lunar limb above Cabeus crater. Diviner
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Fig. 1. (A) Pre- and post-impact images (T–2h, T+90s) of the LCROSS
impact site. (B) Diviner 50- to 100-mm pre-impact brightness tem-
perature map from nadir data, 1 to 15 October 2009. The width of
each inset frame (white box) is about 15 km. The LCROSS impact site
(x) had an estimated surface temperature of ~40 K just before impact

(6). The colors for the solar channel scale linearly with radiance from
1.2 × 10−2 to 4.3 × 10−2 W m−2 sr−1; the infrared frames are linear
with brightness temperature, with ranges of 85 to 105 K (13 to 23 mm),
60 to 90 K (25 to 41 mm), 55 to 80 K (50 to 100 mm), and 65 to 80 K
(100 to 400 mm).
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has independent azimuth and elevation actua-
tors, enabling targeted observations despite this
unusual spacecraft attitude. Diviner targeted the
impact site for eight orbits, separated by about
2 hours each, the third orbit occurring about 90 s
after Centaur impact (T+90s). Diviner’s view of
the impact site was oblique, with an emission
angle of ~ 48° and pixel size of ~400 m.

All seven of Diviner’s infrared channels mea-
sured thermal emission from the Centaur impact
crater during the T+90s observations (Fig. 1A).
Also, the more sensitive of the two solar channels
observed both thermal emission from the sur-
face and scattered sunlight from the ejecta cloud.
About 2 hours later, Diviner’s three longest-
wavelength channels again measured a thermal
signal from the subpixel impact site. At 4 hours
after impact (T+4h), only the channel spanning
wavelengths of 25 to 41 mm measured a signal
above the noise level. No signal due to the
LCROSS Centaur impact was observed on later
orbits. The complete set of measurements is
summarized in table S1. This report focuses only
on the Centaur impact, because emission from the
SSc impact (which occurred after the T+90s
observations and with much lower energy) has
not yet been found in the data.

In addition to thermal emission from the
Centaur impact site, we attribute an enhanced
signal in Diviner’s solar channel, evident over
a broad (~140 km2) region, to scattered sunlight
from the ejecta plume. Using the radiance of the
scattered sunlight, we calculate a total normal
optical depth of 2.0 × 10−5 to 8.1 × 10−4 over
this region at T+90s (7, 8). Given a typical lunar
soil grain size distribution (9), the total column
mass is 1.0 × 10−6 to 4.1 × 10−5 kg m−2. As-
suming an even distribution over the 140-km2

region, the total mass above the sunlight hori-
zon of ~800 m is 2600þ3200

−1400 kg (10). This range is
consistent with those derived from the LCROSS
spectrometer data (1), although some material
may have been outside Diviner’s field of view.

Thermal emission from the Centaur impact
site at T+90s is dominated by near-surface ma-
terial rapidly heated by friction during the im-

pact (11). A simple model using two temperature
components accurately reproduces the Diviner
data, captures the primary features of the spec-
tral energy distribution (figs. S2 and S4), and
is generally consistent with SSc mid-infrared
images of the impact site shortly after impact
(12). In this model, dissipation generates a high-
temperature component within the crater (diam-
eter ~25 m) and a larger region with a somewhat
lower temperature represents an ejecta blanket
(diameter ~150 m).

We simulated radiance values for Diviner’s
spectral channels (table S1) by convolving each
channel’s spectral response with the area-weighted
blackbody spectral radiance for each of the two
temperature components, with a constant back-
ground radiance filling the remainder of the field
of view. Diviner’s high-sensitivity solar channel
cannot detect temperatures below ~ 400 K for
an area less than 103 m2 (~1% pixel fill factor).
Therefore, the clear thermal emission signal in this
channel places a strong lower limit on the tem-
perature of the hot component at T+90s. Using
the 8-mm channels’ T+90s radiances, we find a
best-fit hot component temperature of 600þ50

−90 K,
with an area of 60þ140

−30 m2 (6, 13).
Diviner’s longer-wavelength infrared channels

constrain the average ejecta blanket temperature
to be 110þ50

−20 K, with an area of 8:0þ10
−6 ×104 m2

at T+90s. Between ~0.5 and 1 km away from the
impact, brightness temperatures are elevated
slightly from the pre-impact background; this is
attributed to emission by warm grains in the
sunlit ejecta cloud. About 2 hours after the Centaur
impact, the hot region had cooled below the
~450 K detection threshold (area 60 m2) of the
8-mm channels. A c2 minimization procedure
using the observed emission in two channels
(25 to 41 mm and 50 to 100 mm) failed to
yield a reliable best-fit temperature for the hot
component; however, we estimate a mean tem-
perature of ~100 K for the combined crater–
ejecta blanket region. At T+4h, the 25- to 41-mm
radiance was still above the background level, but
the signal was too low to provide a compelling
lower limit on temperature for either component.

Cooling of the impact zone occurred primar-
ily by surface radiation to space, sublimation of
ice, and (to a lesser degree) downward conduc-
tion at the base of the hot layer. We simulated
these processes with a one-dimensional heat dif-
fusion model, including the conductivity effects
of ice as well as sublimation and vapor diffusion
(14). An unknown fraction of the ~7 × 109 J
total impact energy is irreversibly converted to
heat, although an upper limit of 20% is plau-
sible (15, 16). We investigated the cooling be-
havior of the hot inner region (30 to 200 m2)
for different values of Eh, the fraction of the
total impact energy contributing to heating this
zone (Fig. 2). Only cooling curves with Eh >
3% and initial temperature > 950 K are consist-
ent with the T+90s observations; upper limits on
these quantities are not well constrained (6). Ice
within the regolith causes more rapid cooling by
loss of latent and sensible heat, as well as more
efficient downward conduction. If the regolith
pores were filled with ice (50% porosity), we find
that the heat energy fraction Eh must be >12%,
otherwise cooling is too rapid to match the T+90s
Diviner data. Conversely, if Eh = 5%, ice mass
fractions must be <4%. Thus, an independent
constraint on Eh would effectively place limits on
the initial ice content in the impact zone.

Diviner’s estimate for the area of the hot
component, 30 to 200 m2, is somewhat less than
the area of the Centaur’s impact crater, ~500 to
700 m2 (12), which indicates that some portion
of this region cooled below the detection limit
of ~300 K (for an area of 500 m2) of the Di-
viner 8-mm channels in less than 90 s. This is
consistent with SSc NIR2 images of the Centaur
crater about 4 min after impact, which reveal a
dark inner region, perhaps due to more rapid
cooling of icy material at depth (12). An in-
crease in ice content of just a few percent by
mass over the excavation depth (~1 to 3 m) could
result in more than 100 K of cooling within the
crater relative to the rim after 250 s (Fig. 2), in
which case the crater floor should appear darker
in emission. A conservative upper limit on the
crater floor temperature of 410 K at 250 s after

Fig. 2. Modeled cooling curves for a
60-m2 region of porosity f heated by
a fraction Eh of the total impact kinetic
energy. The initial temperature is a
free parameter, as is the ice content in
the regolith, both of which determine
the initial depth of heating (typically a
few millimeters) for a given value of
Eh. The data point at 90 s after im-
pact is from Diviner data; the upper
limit of 410 K at 250 s after impact
refers to the dark crater observed by
the LCROSS SSc (12, 17). Upper limits
at T+2h and T+4h are based on
Diviner thermal observations. If ice
content increases with depth, interior
parts of the crater should follow the
steepest cooling curves. Note that the ice mass fraction (plotted for Eh = 5%) can only be constrained for a given value of Eh.
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impact can be derived from the relative bright-
ness of the surrounding terrain observed by both
NIR2 and Diviner (17). Model cooling curves
for Eh = 5% (Fig. 2) show that a regolith ice
mass fraction of >2% is required to reproduce
this behavior for the assumed regolith properties.

Finally, a layer a few millimeters thick heated
to an initial temperature of ~1000 K is consistent
with both the Diviner data and the dynamics of
the hydrogen vapor cloud observed by LAMP
(18). At these temperatures, the regolith is desic-
cated nearly instantaneously, but a more grad-
ual flux of sublimed water molecules continues
as the thermal wave propagates downward. The
above models imply that this gradual process
accounts for ~30% of water molecules sublimed
within the impact zone over the course of 4 min.
For a heated area of 30 to 200 m2 and ice mass
fractions of 1%, 10%, and 22% (filled pores),
instantaneous and gradual sublimation produce
a total of 3 to 20 kg, 20 to 130 kg, and 50 to
300 kg of water vapor, respectively. This range
is comparable to the ~155 kg of water vapor ob-
served by LCROSS during this period (1). Thus,
a substantial portion of the observed water vapor
may have been supplied by the steaming crater.
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Diviner Lunar Radiometer
Observations of Cold Traps in the
Moon’s South Polar Region
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Diviner Lunar Radiometer Experiment surface-temperature maps reveal the existence of widespread
surface and near-surface cryogenic regions that extend beyond the boundaries of persistent
shadow. The Lunar Crater Observation and Sensing Satellite (LCROSS) struck one of the coldest of
these regions, where subsurface temperatures are estimated to be 38 kelvin. Large areas of the
lunar polar regions are currently cold enough to cold-trap water ice as well as a range of both more
volatile and less volatile species. The diverse mixture of water and high-volatility compounds
detected in the LCROSS ejecta plume is strong evidence for the impact delivery and cold-trapping
of volatiles derived from primitive outer solar system bodies.

The Moon’s polar regions are notable be-
cause of their potential to cryogenically
trap water ice and other volatile species

(1). The Lunar Reconnaissance Orbiter (2) (LRO)
Diviner Lunar Radiometer Experiment has been
mapping the infrared emission from the Moon

since July 2009 using seven spectral channels that
span a wavelength range from 7.55 to 400 mmat a
spatial resolution of ~200m (3). Thermal maps of
the south polar region (Fig. 1, A and B) were
obtained during the LROmonthly mapping cycle
just before theLunarCraterObservation andSensing

Satellite (LCROSS) impact (4), as the Moon ap-
proached southern summer solstice (5). Themapped
quantity is the bolometric brightness temperature,
which is the wavelength-integrated radiance in all
seven Diviner channels expressed as the temper-
ature of an equivalent blackbody (6). For quan-
tifying the overall heat balance of the surface and
comparing with available models, the bolometric
brightness temperature is the most fundamental
and interpretable measurable quantity. For the
simplest case in which Diviner’s surface footprint
is filled with a blackbody of uniform surface tem-
perature, the bolometric brightness temperature
will be equal to the temperature of the surface. In
the more general case, where Diviner’s surface
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complex surface structures.
meanwhile, the LRO continues to orbit the Moon, sending back a stream of data to help us understand the evolution of its
south polar region persist even in sunlight. In all, about 155 kilograms of water vapor was emitted during the impact; 

 (p. 483) used LRO instruments to confirm that surface temperatures in theet al.Mitrofanov volatile entrapment, and 
 (p. 479) mapped cryogenic zones predictive ofet al.Paige 40 kelvin to at least 950 kelvin. ∼square-meter region from 

 (p. 477) measured the thermal signature of the impact and discovered that it had heated a 30 to 200et al.Hayne and 
, CO, Ca, Hg, and Mg in the impact plume,2spectrograph onboard the Lunar Reconnaissance Orbiter (LRO), detected H

 (p. 472), using an ultravioletet al.Gladstone monitored the different stages of the impact and the resulting plume. 
 (p. 468)et al.Schultz cover) found evidence for the presence of water and other volatiles within the ejecta cloud. 

; see theKerr (p. 463; see the news story by et al.Colaprete near-infrared spectroscopy data from accompanying craft, 
places on the Moon: the permanently shadowed region within the Cabeus crater. Using ultraviolet, visible, and 
Sensing Satellite (LCROSS) experiment, was to search for water and other volatiles in the soil of one of the coldest
of the Moon, ejecting a plume of debris, dust, and vapor. The goal of this event, the Lunar Crater Observation and 

About a year ago, a spent upper stage of an Atlas rocket was deliberately crashed into a crater at the south pole
Watering the Moon
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